[CryptoHack] Bringing it All together

💡 KeyExpansion

이번 단계는 새로운 설명은 없고, 이전 단계에서 했던 것들을 종합해서 AES-128 decrypt 함수를 구현해야 한다.

다운 받은 코드를 보자. 먼저 key와 ciphertext가 설정되어 있다.

expand_key 함수이다. 위에서 설정한 key를 바탕으로 11개의 key 행렬을 만들어 준다.

함수 실행 결과는 다음과 같다. 총 11개의 round key를 생성했다.

def decrypt(key, ciphertext):
    round_keys = expand_key(key) # Remember to start from the last round key and work backwards through them when decrypting

    # Convert ciphertext to state matrix
    state=bytes2matrix(ciphertext)

    # Initial add round key step
    state=add_round_key(state, round_keys[10])
    for i in range(N_ROUNDS - 1, 0, -1):
        inv_shift_rows(state)
        state=sub_bytes(state,sbox=inv_s_box)
        state=add_round_key(state, round_keys[i])
        inv_mix_columns(state)

    # Run final round (skips the InvMixColumns step)
    inv_shift_rows(state)
    state=sub_bytes(state,sbox=inv_s_box)
    state=add_round_key(state, round_keys[0])

    # Convert state matrix to plaintext
    plaintext=matrix2bytes(state)

    return plaintext

 

내가 구현한 decrypt 함수이다. 순서를 정리하면 다음과 같다.

  1. 먼저 마지막 round key랑 xor한다.
  2. inv_shift_rows 함수에 넣는다.
  3. inv_sbox를 통해 되돌려준다.
  4. 각 round에 맞는 round key랑 xor한다.
  5. inv_mix_columns 함수에 넣는다.
  6. 2~5의 과정을 9 라운드 동안 반복한다.
  7. 마지막 라운드에서는 inv_mix_columns 과정만 생략한다.

위의 과정에서 사용한 함수들은 모두 이전 단계에서 썼던 함수를 그대로 가져왔고, 이는 다음 그림을 코드로 작성한 것과 같다.

이번 문제의 전체 코드는 다음과 같다.

N_ROUNDS = 10

key        = b'xc3,\xa6xb5x80^x0cxdbx8dxa5z*xb6xfe\'
ciphertext = b'xd1Ox14jxa4+Oxb6xa1xc4x08B)x8fx12xdd'

def bytes2matrix(text):
    """ Converts a 16-byte array into a 4x4 matrix.  """
    return [list(text[i:i+4]) for i in range(0, len(text), 4)]

def matrix2bytes(matrix):
    """ Converts a 4x4 matrix into a 16-byte array.  """
    flag=[]
    for i in matrix:
        for j in i:
            flag.append(j)
    
    key=''
    for i in flag:
        key+=chr(i)

    return key

def add_round_key(s, k):
    xored=[]
    for i in range(len(s)):
        tmp=[]
        for j in range(len(s[i])):
            tmp.append(s[i][j] ^ k[i][j])
        xored.append(tmp)

    return xored

s_box = (
    0x63, 0x7C, 0x77, 0x7B, 0xF2, 0x6B, 0x6F, 0xC5, 0x30, 0x01, 0x67, 0x2B, 0xFE, 0xD7, 0xAB, 0x76,
    0xCA, 0x82, 0xC9, 0x7D, 0xFA, 0x59, 0x47, 0xF0, 0xAD, 0xD4, 0xA2, 0xAF, 0x9C, 0xA4, 0x72, 0xC0,
    0xB7, 0xFD, 0x93, 0x26, 0x36, 0x3F, 0xF7, 0xCC, 0x34, 0xA5, 0xE5, 0xF1, 0x71, 0xD8, 0x31, 0x15,
    0x04, 0xC7, 0x23, 0xC3, 0x18, 0x96, 0x05, 0x9A, 0x07, 0x12, 0x80, 0xE2, 0xEB, 0x27, 0xB2, 0x75,
    0x09, 0x83, 0x2C, 0x1A, 0x1B, 0x6E, 0x5A, 0xA0, 0x52, 0x3B, 0xD6, 0xB3, 0x29, 0xE3, 0x2F, 0x84,
    0x53, 0xD1, 0x00, 0xED, 0x20, 0xFC, 0xB1, 0x5B, 0x6A, 0xCB, 0xBE, 0x39, 0x4A, 0x4C, 0x58, 0xCF,
    0xD0, 0xEF, 0xAA, 0xFB, 0x43, 0x4D, 0x33, 0x85, 0x45, 0xF9, 0x02, 0x7F, 0x50, 0x3C, 0x9F, 0xA8,
    0x51, 0xA3, 0x40, 0x8F, 0x92, 0x9D, 0x38, 0xF5, 0xBC, 0xB6, 0xDA, 0x21, 0x10, 0xFF, 0xF3, 0xD2,
    0xCD, 0x0C, 0x13, 0xEC, 0x5F, 0x97, 0x44, 0x17, 0xC4, 0xA7, 0x7E, 0x3D, 0x64, 0x5D, 0x19, 0x73,
    0x60, 0x81, 0x4F, 0xDC, 0x22, 0x2A, 0x90, 0x88, 0x46, 0xEE, 0xB8, 0x14, 0xDE, 0x5E, 0x0B, 0xDB,
    0xE0, 0x32, 0x3A, 0x0A, 0x49, 0x06, 0x24, 0x5C, 0xC2, 0xD3, 0xAC, 0x62, 0x91, 0x95, 0xE4, 0x79,
    0xE7, 0xC8, 0x37, 0x6D, 0x8D, 0xD5, 0x4E, 0xA9, 0x6C, 0x56, 0xF4, 0xEA, 0x65, 0x7A, 0xAE, 0x08,
    0xBA, 0x78, 0x25, 0x2E, 0x1C, 0xA6, 0xB4, 0xC6, 0xE8, 0xDD, 0x74, 0x1F, 0x4B, 0xBD, 0x8B, 0x8A,
    0x70, 0x3E, 0xB5, 0x66, 0x48, 0x03, 0xF6, 0x0E, 0x61, 0x35, 0x57, 0xB9, 0x86, 0xC1, 0x1D, 0x9E,
    0xE1, 0xF8, 0x98, 0x11, 0x69, 0xD9, 0x8E, 0x94, 0x9B, 0x1E, 0x87, 0xE9, 0xCE, 0x55, 0x28, 0xDF,
    0x8C, 0xA1, 0x89, 0x0D, 0xBF, 0xE6, 0x42, 0x68, 0x41, 0x99, 0x2D, 0x0F, 0xB0, 0x54, 0xBB, 0x16,
)

inv_s_box = (
    0x52, 0x09, 0x6A, 0xD5, 0x30, 0x36, 0xA5, 0x38, 0xBF, 0x40, 0xA3, 0x9E, 0x81, 0xF3, 0xD7, 0xFB,
    0x7C, 0xE3, 0x39, 0x82, 0x9B, 0x2F, 0xFF, 0x87, 0x34, 0x8E, 0x43, 0x44, 0xC4, 0xDE, 0xE9, 0xCB,
    0x54, 0x7B, 0x94, 0x32, 0xA6, 0xC2, 0x23, 0x3D, 0xEE, 0x4C, 0x95, 0x0B, 0x42, 0xFA, 0xC3, 0x4E,
    0x08, 0x2E, 0xA1, 0x66, 0x28, 0xD9, 0x24, 0xB2, 0x76, 0x5B, 0xA2, 0x49, 0x6D, 0x8B, 0xD1, 0x25,
    0x72, 0xF8, 0xF6, 0x64, 0x86, 0x68, 0x98, 0x16, 0xD4, 0xA4, 0x5C, 0xCC, 0x5D, 0x65, 0xB6, 0x92,
    0x6C, 0x70, 0x48, 0x50, 0xFD, 0xED, 0xB9, 0xDA, 0x5E, 0x15, 0x46, 0x57, 0xA7, 0x8D, 0x9D, 0x84,
    0x90, 0xD8, 0xAB, 0x00, 0x8C, 0xBC, 0xD3, 0x0A, 0xF7, 0xE4, 0x58, 0x05, 0xB8, 0xB3, 0x45, 0x06,
    0xD0, 0x2C, 0x1E, 0x8F, 0xCA, 0x3F, 0x0F, 0x02, 0xC1, 0xAF, 0xBD, 0x03, 0x01, 0x13, 0x8A, 0x6B,
    0x3A, 0x91, 0x11, 0x41, 0x4F, 0x67, 0xDC, 0xEA, 0x97, 0xF2, 0xCF, 0xCE, 0xF0, 0xB4, 0xE6, 0x73,
    0x96, 0xAC, 0x74, 0x22, 0xE7, 0xAD, 0x35, 0x85, 0xE2, 0xF9, 0x37, 0xE8, 0x1C, 0x75, 0xDF, 0x6E,
    0x47, 0xF1, 0x1A, 0x71, 0x1D, 0x29, 0xC5, 0x89, 0x6F, 0xB7, 0x62, 0x0E, 0xAA, 0x18, 0xBE, 0x1B,
    0xFC, 0x56, 0x3E, 0x4B, 0xC6, 0xD2, 0x79, 0x20, 0x9A, 0xDB, 0xC0, 0xFE, 0x78, 0xCD, 0x5A, 0xF4,
    0x1F, 0xDD, 0xA8, 0x33, 0x88, 0x07, 0xC7, 0x31, 0xB1, 0x12, 0x10, 0x59, 0x27, 0x80, 0xEC, 0x5F,
    0x60, 0x51, 0x7F, 0xA9, 0x19, 0xB5, 0x4A, 0x0D, 0x2D, 0xE5, 0x7A, 0x9F, 0x93, 0xC9, 0x9C, 0xEF,
    0xA0, 0xE0, 0x3B, 0x4D, 0xAE, 0x2A, 0xF5, 0xB0, 0xC8, 0xEB, 0xBB, 0x3C, 0x83, 0x53, 0x99, 0x61,
    0x17, 0x2B, 0x04, 0x7E, 0xBA, 0x77, 0xD6, 0x26, 0xE1, 0x69, 0x14, 0x63, 0x55, 0x21, 0x0C, 0x7D,
)

def sub_bytes(s, sbox=s_box):
    res=[]
    for i in s:
        tmp=[]
        for j in i: 
            tmp.append(sbox[j])
        res.append(tmp)

    return(res)

xtime = lambda a: (((a << 1) ^ 0x1B) & 0xFF) if (a & 0x80) else (a << 1)

def inv_shift_rows(s):
    s[0][1], s[1][1], s[2][1], s[3][1] = s[3][1], s[0][1], s[1][1], s[2][1]
    s[0][2], s[1][2], s[2][2], s[3][2] = s[2][2], s[3][2], s[0][2], s[1][2]
    s[0][3], s[1][3], s[2][3], s[3][3] = s[1][3], s[2][3], s[3][3], s[0][3]

def mix_single_column(a):
    # see Sec 4.1.2 in The Design of Rijndael
    t = a[0] ^ a[1] ^ a[2] ^ a[3]
    u = a[0]
    a[0] ^= t ^ xtime(a[0] ^ a[1])
    a[1] ^= t ^ xtime(a[1] ^ a[2])
    a[2] ^= t ^ xtime(a[2] ^ a[3])
    a[3] ^= t ^ xtime(a[3] ^ u)


def mix_columns(s):
    for i in range(4):
        mix_single_column(s[i])


def inv_mix_columns(s):
    # see Sec 4.1.3 in The Design of Rijndael
    for i in range(4):
        u = xtime(xtime(s[i][0] ^ s[i][2]))
        v = xtime(xtime(s[i][1] ^ s[i][3]))
        s[i][0] ^= u
        s[i][1] ^= v
        s[i][2] ^= u
        s[i][3] ^= v

    mix_columns(s)

def expand_key(master_key):
    """
    Expands and returns a list of key matrices for the given master_key.
    """

    # Round constants https://en.wikipedia.org/wiki/AES_key_schedule#Round_constants
    r_con = (
        0x00, 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40,
        0x80, 0x1B, 0x36, 0x6C, 0xD8, 0xAB, 0x4D, 0x9A,
        0x2F, 0x5E, 0xBC, 0x63, 0xC6, 0x97, 0x35, 0x6A,
        0xD4, 0xB3, 0x7D, 0xFA, 0xEF, 0xC5, 0x91, 0x39,
    )

    # Initialize round keys with raw key material.
    key_columns = bytes2matrix(master_key)
    iteration_size = len(master_key) // 4

    # Each iteration has exactly as many columns as the key material.
    i = 1
    while len(key_columns) < (N_ROUNDS + 1) * 4:
        # Copy previous word.
        word = list(key_columns[-1])

        # Perform schedule_core once every "row".
        if len(key_columns) % iteration_size == 0:
            # Circular shift.
            word.append(word.pop(0))
            # Map to S-BOX.
            word = [s_box[b] for b in word]
            # XOR with first byte of R-CON, since the others bytes of R-CON are 0.
            word[0] ^= r_con[i]
            i += 1
        elif len(master_key) == 32 and len(key_columns) % iteration_size == 4:
            # Run word through S-box in the fourth iteration when using a
            # 256-bit key.
            word = [s_box[b] for b in word]

        # XOR with equivalent word from previous iteration.
        word = bytes(i^j for i, j in zip(word, key_columns[-iteration_size]))
        key_columns.append(word)

    # Group key words in 4x4 byte matrices.
    return [key_columns[4*i : 4*(i+1)] for i in range(len(key_columns) // 4)]


def decrypt(key, ciphertext):
    round_keys = expand_key(key) # Remember to start from the last round key and work backwards through them when decrypting

    # Convert ciphertext to state matrix
    state=bytes2matrix(ciphertext)

    # Initial add round key step
    state=add_round_key(state, round_keys[10])
    for i in range(N_ROUNDS - 1, 0, -1):
        inv_shift_rows(state)
        state=sub_bytes(state,sbox=inv_s_box)
        state=add_round_key(state, round_keys[i])
        inv_mix_columns(state)

    # Run final round (skips the InvMixColumns step)
    inv_shift_rows(state)
    state=sub_bytes(state,sbox=inv_s_box)
    state=add_round_key(state, round_keys[0])

    # Convert state matrix to plaintext
    plaintext=matrix2bytes(state)

    return plaintext


print(decrypt(key, ciphertext))

 

코드 실행 결과이다.

flag을 잘 얻어오고 있다!

🚩 flag: crypto{MYAES128}

 

댓글 달기

이메일 주소는 공개되지 않습니다. 필수 필드는 *로 표시됩니다

위로 스크롤